54 research outputs found

    Precision Improvement in Inertial Miniaturized Navigators Based on Fuzzy Logic Denoising of Sensors Signals

    Get PDF
    The chapter presents a new strategy to improve the precision of the inertial navigators processing in a fuzzy manner the signals provided by the miniaturized sensors equipping their inertial measurement units (IMU). To apply the developed technique, the hardware component of the inertial measurement units was specifically designed to include some redundant clusters of inertial sensors disposed in linear configurations on the measurement axes. The algorithm acts at the level of each detection cluster designed to measure an acceleration or angular speed along with an IMU axis by fusing the data obtained from the sensors in respective cluster. Based on the standard deviations of the sensors signals estimated for a data frame with a well-known size, the fuzzy logic mechanism provides a set of weights associated with each sensor in cluster, which are further used to fuse the data acquired from sensors at the current time. The algorithm has an adaptive character, the data frame used to estimate the standard deviations of the sensors signals being permanently updated with the new sensors measurements, and, in this way, the weights associated with each sensor are reestimated at each measurement step

    Algorithm for the aircraft trajectories considering No Fly Zones for a Flight Management System

    Get PDF

    Development of an Adaptive Aero-Propulsive Performance Model in Cruise Flight – Application to the Cessna Citation X

    Get PDF
    To accurately predict the amount of fuel needed by an aircraft for a given flight, a performance model must account for engine and airframe degradation. This paper presents a methodology to identify an aero-propulsive model to predict the fuel flow of an aircraft in cruise, while considering initial modeling uncertainties and performance variation over time due to degradation. Starting from performance data obtained from a Research Aircraft Flight Simulator, an initial aero-propulsive model was identified using different estimation methods. The estimation methods studied in this paper were polynomial interpolation, thin-plate splines, and neural networks. The aero-propulsive model was then structured using two lookup tables: one lookup table reflecting the aerodynamic performance, and another table reflecting the propulsive performance. Subsequently, an adaptative technique was developed to locally and then globally, adapt the lookup tables defining the aero-propulsive model using flight data. The methodology was applied to the Cessna Citation X business jet aircraft, for which a highly qualified level D research aircraft flight simulator was available. The results demonstrated that by using the proposed aero-propulsive performance model, it was possible to predict the aerodynamic performance with an average relative error of 0.99%, and the propulsive performance with an average relative error of 3.38%. These results were obtained using the neural network estimation method

    Design and experimental testing of a control system for a morphing wing model actuated with miniature BLDC motors

    Get PDF
    Abstract The paper deals with the design and experimental validation of the actuation mechanism control system for a morphing wing model. The experimental morphable wing model manufactured in this project is a full-size scale wing tip for a real aircraft equipped with an aileron. The morphing actuation of the model is based on a mechanism with four similar in house designed and manufactured actuators, positioned inside the wing on two parallel lines. Each of the four actuators used a BrushLess Direct Current (BLDC) electric motor integrated with a mechanical part performing the conversion of the angular displacements into linear displacements. The following have been chosen as successive steps in the design of the actuator control system: (A) Mathematical and software modelling of the actuator; (B) Design of the control system architecture and tuning using Internal Model Control (IMC) methodology; (C) Numerical simulation of the controlled actuator and its testing on bench and wind tunnel. The morphing wing experimental model is tested both at the laboratory level, with no airflow, to evaluate the components integration and the whole system functioning, but also in the wind tunnel, in the presence of airflow, to evaluate its behavior and the aerodynamic gain

    Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests

    Get PDF
    In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The optimization was performed for 16 flight cases expressed in terms of various combinations of speeds, angles of attack and aileron deflections. The displacements resulted from the optimization were used during the wind tunnel tests of the wing tip demonstrator for the actuators control to change the upper surface shape of the wing. The results of the optimization of the flow behavior for the airfoil morphing upper-surface problem were validated with wind tunnel experimental transition results obtained with infra-red Thermography on the wing-tip demonstrator. The validation proved that the 2D numerical optimization using the ‘in-house’ genetic algorithm was an appropriate tool in improving various aspects of a wing’s aerodynamic performances

    A new non-linear vortex lattice method : applications to wing aerodynamic optimizations

    Get PDF
    This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing

    Editorial for the Special Issue “Aircraft Modeling and Simulation”

    No full text
    New airplane and unmanned aerial system modeling, simulation, and design methodologies are very important in aerospace engineering [...
    • …
    corecore